Induction Generator

HTTP/1.1 200 OK
Server: Apache
X-Content-Type-Options: nosniff
Content-language: en
X-UA-Compatible: IE=Edge
Vary: Accept-Encoding,Cookie
Last-Modified: Wed, 26 Nov 2014 04:35:27 GMT
Content-Type: text/html; charset=UTF-8
X-Varnish: 3778367883 3778215724, 1387079085 1371494375
Via: 1.1 varnish, 1.1 varnish
Date: Thu, 27 Nov 2014 16:52:07 GMT
Age: 12396
Connection: close
X-Cache: cp1068 hit (1), cp1065 frontend hit (5)
Cache-Control: private, s-maxage=0, max-age=0, must-revalidate
X-Analytics: php=zend
Set-Cookie: GeoIP=US:Houston:29.8301:-95.4739:v4; Path=/; Domain=.wikipedia.org

Induction generator

Jump to: navigation, search

An induction generator or asynchronous generator is a type of alternating current (AC) electrical generator that uses the principles of induction motors to produce power. Induction generators operate by mechanically turning their rotors faster than the synchronous speed corresponding to the electric grid they are connected with. A regular AC asynchronous motor usually can be used as a generator, without any internal modifications. Induction generators are useful in applications such as mini hydro power plants, wind turbines, and in reducing high-pressure gas streams to lower pressure, because they can recover energy with relatively simple controls.

An induction generator must be excited with a leading voltage. This is usually done by connection to an electrical grid; sometimes, however, they are self-excited by using phase-correcting capacitors. Because of this, induction generators cannot usually "black start" a de-energized distribution system.

Contents

  • 1 Principle of operation
    • 1.1 Excitation
    • 1.2 Active power
    • 1.3 Required capacitance
    • 1.4 Torque vs. slip
  • 2 Grid and stand-alone connections
  • 3 Use of induction generators
  • 4 Example application
  • 5 See also
  • 6 Notes
  • 7 References
  • 8 External links

Principle of operation[edit]

An induction generator or induction motor produces electrical power when its rotor is turned faster than the synchronous speed. For a typical four-pole motor (two pairs of poles on stator) operating on a 60 Hz electrical grid, the synchronous speed is 1800 rotations per minute (rpm). The same four-pole motor operating on a 50 Hz grid will have a synchronous speed of 1500 RPM. The motor normally turns slightly slower than the synchronous speed; the difference between synchronous and operating speed is called "slip" and is usually expressed as per cent of the synchronous speed. For example, a motor operating at 1450 RPM that has a synchronous speed of 1500 RPM is running at a slip of +3.3%.

In normal motor operation, stator flux rotation is faster than the rotor rotation. This causes the stator flux to induce rotor currents, which create a rotor flux with magnetic polarity opposite to stator. In this way, the rotor is dragged along behind stator flux, with the currents in the rotor induced at the slip frequency.

In generator operation, a prime mover (turbine or engine) drives the rotor above the synchronous speed (negative slip). The stator flux still induces currents in the rotor, but since the opposing rotor flux is now cutting the stator coils, an active current is produced in stator coils and the motor now operates as a generator, sending power back to the electrical grid.

Excitation[edit]

Equivalent circuit of induction generator

An induction machine requires externally supplied armature current; it cannot start on its own as a generator. Because the rotor field always lags behind the stator field, the induction machine always "consumes" reactive power, regardless of whether it is operating as a generator or a motor.

A source of excitation current for magnetizing flux (reactive power) for the stator is still required, to induce rotor current. This can be supplied from the electrical grid or, once it starts producing power, from the generator itself. The rotating magnetic flux from the stator induces currents in the rotor, which also produces a magnetic field. If the rotor turns slower than the rate of the rotating flux, the machine acts like an induction motor. If the rotor is turned faster, it acts like a generator, producing power.

Active power[edit]

Active power delivered to the line is proportional to slip above the synchronous speed. Full rated power of the generator is reached at very small slip values (motor dependent, typically 3%). At synchronous speed of 1800 rpm, generator will produce no power. When the driving speed is increased to 1860 rpm (typical example), full output power is produced. If the prime mover is unable to produce enough power to fully drive the generator, speed will remain somewhere between 1800 and 1860 rpm range.

Required capacitance[edit]

A capacitor bank must supply reactive power to the motor when used in stand-alone mode.The reactive power supplied should be equal or greater than the reactive power that the machine normally draws when operating as a motor. Terminal voltage will increase with capacitance, but is limited by iron saturation.

Torque vs. slip[edit]

The basic fundamental of induction generators is the conversion between mechanical energy to electrical energy. This requires a higher shaft rotating speed than the synchronous speed. An external torque is required to be applied to the rotor, which generates electric power. However, indefinitely increasing torque doesn't lead to an indefinite increase in power generation. The rotating magnetic field torque excited from the armature works to counter the motion of the rotor and prevent over speed because of induced motion in the opposite direction. As the speed of the motor increases the counter torque reaches a max value of torque (breakdown torque) that it can operate until before the operating conditions become unstable. Ideally, induction generators work best in the stable region between the no-load condition and maximum torque region.

Grid and stand-alone connections[edit]

Typical connections when used as a standalone generator

In induction generators, the reactive power required to establish the air gap magnetic flux is provided by a capacitor bank connected to the machine in case of stand-alone system and in case of grid connection it draws reactive power from the grid to maintain its air gap flux. For a grid-connected system, frequency and voltage at the machine will be dictated by the electric grid, since it is very small compared to the whole system. For stand-alone systems, frequency and voltage are complex function of machine parameters, capacitance used for excitation, and load value and type.

Induction generator in grid-connected operation

Use of induction generators[edit]

Induction generators are often used in wind turbines and some micro hydro installations due to their ability to produce useful power at varying rotor speeds. Induction generators are mechanically and electrically simpler than other generator types. They are also more rugged, requiring no brushes or commutators.

Induction generators are particularly suitable for wind generating stations as in this case speed is always a variable factor. Unlike synchronous motors, induction generators are load-dependent and cannot be used alone for grid frequency control.

The generator at the grid connection drawing is a double-fed type, not a standard squirrel cage motor generator.

Example application[edit]

One must use a 10 hp, 1760 r/min, 440 V, three-phase induction motor as an asynchronous generator. The full-load current of the motor is 10 A and the full-load power factor is 0.8.

Required capacitance per phase if capacitors are connected in delta:

Apparent power S = √3 E I = 1.73 × 440 × 10 = 7612 VA
Active power P = S cos θ = 7612 × 0.8 = 6090 W
Reactive power Q = \sqrt{S^2-P^2} = 4567 VAR

For a machine to run as an asynchronous generator, capacitor bank must supply minimum 4567 / 3 phases = 1523 VAR per phase. Voltage per capacitor is 440 V because capacitors are connected in delta.

Capacitive current Ic = Q/E = 1523/440 = 3.46 A
Capacitive reactance per phase Xc = E/I = 127 Ω

Minimum capacitance per phase:

C = 1 / (2*π*f*Xc) = 1 / (2 * 3.141 * 60 * 127) = 21 microfarads.

If the load also absorbs reactive power, capacitor bank must be increased in size to compensate.

Prime mover speed should be used to generate frequency of 60 Hz:

Typically, slip should be similar to full-load value when machine is running as motor, but negative (generator operation):

if Ns = 1800, one can choose N=Ns+40 rpm
Required prime mover speed N = 1800 + 40 = 1840 rpm.

See also[edit]

  • Electrical generator

Notes[edit]

References[edit]

  • Electrical Machines, Drives, and Power Systems, 4th edition, Theodore Wildi, Prentice Hall, ISBN 0-13-082460-7, pages 311–314.

Navigation menu

© This material from Wikipedia is licensed under the GFDL.

Tags: , <BR/>

Republished by Blog Post Promoter

Recent generator search terms:

induction generator 

Related Posts:

  1. About Induction Generators
  2. Linear Induction Generators
  3. Characteristics Of An Induction Generator
  4. How An Induction Generator Controller Works
  5. Motors Used By Single Phase Induction Generator

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>